MATH 301

INTRODUCTION TO PROOFS

Sina Hazratpour Johns Hopkins University Fall 2021 - Recursion

Relevant sections of the textbook

• Chapter 4

Overview

2 Applications of recursion theorem

3 Recursion in Lean

This means that the only way to construct a natural number is to start with 0 and apply the successor function finitely many times.

This means that the only way to construct a natural number is to start with 0 and apply the successor function finitely many times. Therefore, natural numbers are

 $0, \operatorname{succ}(0), \operatorname{succ}(\operatorname{succ}(0)), \dots$

This means that the only way to construct a natural number is to start with 0 and apply the successor function finitely many times. Therefore, natural numbers are

 $0, \operatorname{succ}(0), \operatorname{succ}(\operatorname{succ}(0)), \dots$

We also postulated the principle of induction on natural numbers.

Recall that we can think of a predicate *P* on natural numbers as a function $P \colon \mathbb{N} \to \mathbf{2}$ where the set **2** consists of truth values \bot and \top .

Recall that we can think of a predicate *P* on natural numbers as a function $P \colon \mathbb{N} \to \mathbf{2}$ where the set $\mathbf{2}$ consists of truth values \bot and \top . Note that the set $\mathbb{N} \to \mathbf{2}$ is in bijection with $\mathcal{P}(\mathbb{N})$.

Recall that we can think of a predicate P on natural numbers as a function $P \colon \mathbb{N} \to \mathbf{2}$ where the set $\mathbf{2}$ consists of truth values \bot and \top . Note that the set $\mathbb{N} \to \mathbf{2}$ is in bijection with $\mathcal{P}(\mathbb{N})$. In one way, we construct a function

 $\eta \colon (\mathbb{N} \to \mathbf{2}) \to \mathcal{P}(\mathbb{N})$

whose value at a predicate *P* is the set consisting of all $n \in \mathbb{N}$ such that *P*(*n*) is true, i.e.

$$\eta(\boldsymbol{P}) =_{\mathsf{def}} \{ \boldsymbol{n} \in \mathbb{N} \mid \boldsymbol{P}(\boldsymbol{n}) \}$$

Recall that we can think of a predicate *P* on natural numbers as a function $P \colon \mathbb{N} \to \mathbf{2}$ where the set $\mathbf{2}$ consists of truth values \bot and \top . Note that the set $\mathbb{N} \to \mathbf{2}$ is in bijection with $\mathcal{P}(\mathbb{N})$. In one way, we construct a function

 $\eta \colon (\mathbb{N} \to \mathbf{2}) \to \mathcal{P}(\mathbb{N})$

whose value at a predicate *P* is the set consisting of all $n \in \mathbb{N}$ such that *P*(*n*) is true, i.e.

$$\eta(\boldsymbol{P}) =_{\mathsf{def}} \{ \boldsymbol{n} \in \mathbb{N} \mid \boldsymbol{P}(\boldsymbol{n}) \}$$

In the other direction, we take a subset *S* of \mathbb{N} to the characteristic function $\chi_S \colon \mathbb{N} \to \mathbf{2}$.

The principle of induction says that for any property $P \colon \mathbb{N} \to 2$ of natural numbers, if

- P(0) holds, and
- 2 whenever P(n) holds then P(n + 1) holds,

we have that P holds of every natural number.

The principle of induction reformulated

Let $S \subseteq \mathbb{N}$ be any set of natural numbers that contains 0 and is closed under the successor operation. Then $S = \mathbb{N}$.

Example

- For any finite set S, if S has n elements, then there are 2^n subsets of S.
- For every $n \in \mathbb{N}$, we have $0^2 + 1^2 + 2^2 + ..., n^2 = \frac{1}{6}n(1+n)(1+2n)$.

But, we also need to compute with natural numbers. At the very least, we should be able to define the arithmetic operations +, \times , etc.

That is why we need another principle to help us with computation of natural numbers. This is the so-called principle of recursion which in fact can be proved from the principle of induction!

Recursion theorem

Theorem

Let A be a set. For all $a \in A$ and all $g \colon \mathbb{N} \times A \to A$, there is a unique function $f \colon \mathbb{N} \to A$ such that

1 f(0) = a

2 $f(\operatorname{succ}(n)) = g(n, f(n))$ for all $n \in \mathbb{N}$.

Theorem

Let A be a set. For all $a \in A$ and all $g \colon \mathbb{N} \times A \to A$, there is a unique function $f \colon \mathbb{N} \to A$ such that

1
$$f(0) = a$$

2
$$f(\operatorname{succ}(n)) = g(n, f(n))$$
 for all $n \in \mathbb{N}$.

Proof.

Theorem 4.1.2 (Recursion theorem) Page 145.

Recursion theorem

Theorem

Let A be a set. For all $a \in A$ and all $g \colon \mathbb{N} \times A \to A$, there is a unique function $f \colon \mathbb{N} \to A$ such that

1 f(0) = a

2
$$f(\operatorname{succ}(n)) = g(n, f(n))$$
 for all $n \in \mathbb{N}$.

Proof.

Theorem 4.1.2 (Recursion theorem) Page 145.

Since for every function g such function f is uniquely determined, we write rec(g) for it.

Theorem

Let A be a set. For all $a \in A$ and all $g \colon \mathbb{N} \times A \to A$, there is a unique function $f \colon \mathbb{N} \to A$ such that

1
$$f(0) = a$$

2
$$f(\operatorname{succ}(n)) = g(n, f(n))$$
 for all $n \in \mathbb{N}$.

We have

 $\operatorname{rec}(g)(0) = a$

Recursion theorem

We have

$$rec(g)(0) = a$$

 $rec(g)(1) = rec(g)(succ(0)) = g(0, rec(g)(0)) = g(0, a)$

We have

$$rec(g)(0) = a$$

$$rec(g)(1) = rec(g)(succ(0)) = g(0, rec(g)(0)) = g(0, a)$$

$$rec(g)(2) = rec(g)(succ(1)) = g(1, rec(g)(1)) = g(1, g(0, a))$$

We have

```
rec(g)(0) = a

rec(g)(1) = rec(g)(succ(0)) = g(0, rec(g)(0)) = g(0, a)

rec(g)(2) = rec(g)(succ(1)) = g(1, rec(g)(1)) = g(1, g(0, a))

:
```

In order to specify a function $f: \mathbb{N} \to A$, it suffices to define f(0)and, for given $n \in \mathbb{N}$, assume that f(n) has been defined, and define $f(\operatorname{succ}(n))$ in terms of n and f(n).

Overview

2 Applications of recursion theorem

3 Recursion in Lean

We define additions of natural numbers as a function +: $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$.

We define additions of natural numbers as a function $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$. This means for every $m \in \mathbb{N}$, we have to define a function $m + (-): \mathbb{N} \to \mathbb{N}$.

We define additions of natural numbers as a function $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$. This means for every $m \in \mathbb{N}$, we have to define a function $m + (-): \mathbb{N} \to \mathbb{N}$. We define the latter by recursion: consider the function $g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ given by the assignment $g(i, j) = \operatorname{succ}(j)$.

We define additions of natural numbers as a function $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$. This means for every $m \in \mathbb{N}$, we have to define a function $m + (-): \mathbb{N} \to \mathbb{N}$. We define the latter by recursion: consider the function $g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ given by the assignment $g(i, j) = \operatorname{succ}(j)$.

Choose a = m in the recursion theorem. Therefore,

We define additions of natural numbers as a function $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$. This means for every $m \in \mathbb{N}$, we have to define a function $m + (-): \mathbb{N} \to \mathbb{N}$. We define the latter by recursion: consider the function $g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ given by the assignment $g(i, j) = \operatorname{succ}(j)$.

Choose a = m in the recursion theorem. Therefore,

```
rec(g)(0) = m

rec(g)(1) = rec(g)(succ(0)) = g(0, rec(g)(0)) = g(0, m) = succ(m)

rec(g)(2) = rec(g)(succ(1)) = g(1, rec(g)(1)) = succ(succ(m))

rec(g)(succ(n)) = g(n, rec(g)(n))
```

We now define $m + (-) \colon \mathbb{N} \to \mathbb{N}$ to be $\operatorname{rec}(g) \colon \mathbb{N} \to \mathbb{N}$.

We now define $m + (-) \colon \mathbb{N} \to \mathbb{N}$ to be $\operatorname{rec}(g) \colon \mathbb{N} \to \mathbb{N}$.

$$m + 0 = m$$
(1)
$$m + \operatorname{succ}(n) = \operatorname{succ}(m + n)$$
(2)

We now define $m + (-) \colon \mathbb{N} \to \mathbb{N}$ to be $\operatorname{rec}(g) \colon \mathbb{N} \to \mathbb{N}$.

$$m + 0 = m$$
(1)
$$m + \operatorname{succ}(n) = \operatorname{succ}(m + n)$$
(2)

Therefore,

$$m + 1 = m + \operatorname{succ}(0) = \operatorname{succ}(m + 0) = \operatorname{succ}(m)$$
 (3)

We now define $m + (-) \colon \mathbb{N} \to \mathbb{N}$ to be $\operatorname{rec}(g) \colon \mathbb{N} \to \mathbb{N}$.

$$m + 0 = m$$
(1)
$$m + \operatorname{succ}(n) = \operatorname{succ}(m + n)$$
(2)

Therefore,

$$m + 1 = m + \operatorname{succ}(0) = \operatorname{succ}(m + 0) = \operatorname{succ}(m)$$
 (3)

In particular,

$$1 + 1 = succ(1) = succ(succ(0)) = 2$$

Proposition

For every natural numbers m, we have m + 1 = 1 + m.

Proof.

We use induction on *m* to prove that m + 1 = 1 + m for all $m \in \mathbb{N}$.

Proposition

For every natural numbers m, we have m + 1 = 1 + m.

Proof.

We use induction on *m* to prove that m + 1 = 1 + m for all $m \in \mathbb{N}$. When m = 0, by equations (1) and (2), we have $1 + 0 = 1 = \operatorname{succ}(0) = \operatorname{succ}(0 + 0) = 0 + \operatorname{succ}(0) = 0 + 1$.

Proposition

For every natural numbers m, we have m + 1 = 1 + m.

Proof.

We use induction on *m* to prove that m + 1 = 1 + m for all $m \in \mathbb{N}$.

When m = 0, by equations (1) and (2), we have

 $1 + 0 = 1 = \operatorname{succ}(0) = \operatorname{succ}(0 + 0) = 0 + \operatorname{succ}(0) = 0 + 1.$

Suppose that 1 + m = m + 1. We want to show that $1 + \operatorname{succ}(m) = \operatorname{succ}(m) + 1$.

Proposition

For every natural numbers m, we have m + 1 = 1 + m.

Proof.

We use induction on *m* to prove that m + 1 = 1 + m for all $m \in \mathbb{N}$. When m = 0, by equations (1) and (2), we have $1 + 0 = 1 = \operatorname{succ}(0) = \operatorname{succ}(0 + 0) = 0 + \operatorname{succ}(0) = 0 + 1$. Suppose that 1 + m = m + 1. We want to show that $1 + \operatorname{succ}(m) = \operatorname{succ}(m) + 1$. But, by definition of function m + (-) for m = 1,

 $1 + \operatorname{succ}(m) = \operatorname{succ}(1 + m) = \operatorname{succ}(m + 1) = \operatorname{succ}(\operatorname{succ}(m)) = \operatorname{succ}(m) + 1,$

where the last two equations above follow from equation (3).

Proposition (commutativity of addition of natural numbers) For every natural numbers m and n, we have m + n = n + m.

Proposition (commutativity of addition of natural numbers)

For every natural numbers m and n, we have m + n = n + m.

Proof left to the reader.

Proposition (commutativity of addition of natural numbers)

For every natural numbers m and n, we have m + n = n + m.

Proof left to the reader.

Hint: We use the following lemmas first:

Lemma (neutrality of 0 for +)

For all natural numbers k we have k + 0 = 0 + k.

Lemma (associativity of addition)

For all natural numbers k + (m + n) = (k + m) + n.

Proof.

We prove the commutativity of addition by fixing m and inducting on n.

Proof.

We prove the commutativity of addition by fixing *m* and inducting on *n*. If n = 0, by the neutrality of 0 (lemma above) we have that m + 0 = 0 + m, and we are done. Suppose that m + n = n + m. We want to prove that $m + \operatorname{succ}(n) = \operatorname{succ}(n) + m$.

Proof.

We prove the commutativity of addition by fixing *m* and inducting on *n*. If n = 0, by the neutrality of 0 (lemma above) we have that m + 0 = 0 + m, and we are done. Suppose that m + n = n + m. We want to prove that $m + \operatorname{succ}(n) = \operatorname{succ}(n) + m$.

$m + \operatorname{succ}(n)$	= m + (n + 1)	by eq (3)
	= (m + n) + 1	by associativity of addition
	= (n + m) + 1	by inductive hypothesis
	= n + (m + 1)	by associativity of addition
	= n + (1 + m)	by the last proposition
	= (n + 1) + m	by associativity of addition
	= succ(n) + m	by eq (2)

Overview

2 Applications of recursion theorem

