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Recall that in the last lecture, we defined the set of natural numbers N to be
a set generated by the by the number 0 and the successor function
succ: N → N.

This means that the only way to construct a natural number is to start with 0
and apply the successor function finitely many times. Therefore, natural
numbers are

0, succ(0), succ(succ(0)), ...

We also postulated the principle of induction on natural numbers.
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Predicates and subsets

Recall that we can think of a predicate P on natural numbers as a function
P : N → 2 where the set 2 consists of truth values ⊥ and ⊤.

Note that the set N → 2 is in bijection with P(N).
In one way, we construct a function

η : (N → 2) → P(N)

whose value at a predicate P is the set consisting of all n ∈ N such that P(n)
is true, i.e.

η(P) =def {n ∈ N | P(n)}

In the other direction, we take a subset S of N to the characteristic function
χS : N → 2.
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The principle of induction

The principle of induction says that for any property P : N → 2 of natural
numbers, if

1 P(0) holds, and

2 whenever P(n) holds then P(n + 1) holds,

we have that P holds of every natural number.



The principle of induction reformulated

Let S ⊆ N be any set of natural numbers that contains 0 and is closed under
the successor operation. Then S = N.



Proofs vs computation

We saw that the principle of induction is a very powerful tool in proving
universally quantified statements about natural numbers.



Proofs vs computation

We saw that the principle of induction is a very powerful tool in proving
universally quantified statements about natural numbers.

Example
• For any finite set S, if S has n elements, then there are 2n subsets of S.

• For every n ∈ N, we have 02 + 12 + 22 + ... n2 = 1
6 n (1 + n) (1 + 2n).



Proofs vs computation

We saw that the principle of induction is a very powerful tool in proving
universally quantified statements about natural numbers.

But, we also need to compute with natural numbers. At the very least, we
should be able to define the arithmetic operations +, ×, etc.



Proofs vs computation

We saw that the principle of induction is a very powerful tool in proving
universally quantified statements about natural numbers.

That is why we need another principle to help us with computation of natural
numbers.This is the so-called principle of recursion which in fact can be
proved from the principle of induction!



Recursion theorem

Theorem
Let A be a set. For all a ∈ A and all g : N× A → A, there is a unique function
f : N → A such that

1 f (0) = a

2 f (succ(n)) = g(n, f (n)) for all n ∈ N.
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Since for every function g such function f is uniquely determined, we write
rec(g) for it.



Recursion theorem

Theorem
Let A be a set. For all a ∈ A and all g : N× A → A, there is a unique function
f : N → A such that

1 f (0) = a

2 f (succ(n)) = g(n, f (n)) for all n ∈ N.

We have

rec(g)(0) = a



Recursion theorem

We have

rec(g)(0) = a

rec(g)(1) = rec(g)(succ(0)) = g(0, rec(g)(0)) = g(0, a)
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Recursion, practically!

In order to specify a function f : N → A, it suffices to define f (0)
and, for given n ∈ N, assume that f (n) has been defined, and

define f (succ(n)) in terms of n and f (n).
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Addition by recursion

We define additions of natural numbers as a function +: N× N → N.

This means for every m ∈ N, we have to define a function m + (−) : N → N.
We define the latter by recursion: consider the function g : N× N → N given
by the assignment g(i , j) = succ(j).
Choose a = m in the recursion theorem. Therefore,

rec(g)(0) = m

rec(g)(1) = rec(g)(succ(0)) = g(0, rec(g)(0)) = g(0, m) = succ(m)

rec(g)(2) = rec(g)(succ(1)) = g(1, rec(g)(1)) = succ(succ(m))

rec(g)(succ(n)) = g(n, rec(g)(n))
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Addition by recursion

We now define m + (−) : N → N to be rec(g) : N → N.

m + 0 = m (1)

m + succ(n) = succ(m + n) (2)

Therefore,
m + 1 = m + succ(0) = succ(m + 0) = succ(m) (3)

In particular,
1 + 1 = succ(1) = succ(succ(0)) = 2
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Combining recursion and induction

Proposition
For every natural numbers m , we have m + 1 = 1 + m.

Proof.
We use induction on m to prove that m + 1 = 1 + m for all m ∈ N.

When m = 0, by equations (1) and (2), we have
1 + 0 = 1 = succ(0) = succ(0 + 0) = 0 + succ(0) = 0 + 1.
Suppose that 1 + m = m + 1. We want to show that 1 + succ(m) = succ(m) + 1.
But, by definition of function m + (−) for m = 1,

1 + succ(m) = succ(1 + m) = succ(m + 1) = succ(succ(m)) = succ(m) + 1 ,

where the last two equations above follow from equation (3).
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Proposition (commutativity of addition of natural numbers)
For every natural numbers m and n, we have m + n = n + m.

Proof left to the reader.
Hint: We use the following lemmas first:

Lemma (neutrality of 0 for +)
For all natural numbers k we have k + 0 = 0 + k.

Lemma (associativity of addition)
For all natural numbers k + (m + n) = (k + m) + n.
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Proof.
We prove the commutativity of addition by fixing m and inducting on n.

If n = 0, by the neutrality of 0 (lemma above) we have that m + 0 = 0 + m, and
we are done. Suppose that m + n = n + m. We want to prove that
m + succ(n) = succ(n) + m.

m + succ(n) = m + (n + 1) by eq (3)

= (m + n) + 1 by associativity of addition

= (n + m) + 1 by inductive hypothesis

= n + (m + 1) by associativity of addition

= n + (1 + m) by the last proposition

= (n + 1) + m by associativity of addition

= succ(n) + m by eq (2)
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